PIC10F200/202/204/206 3.1 Clocking Scheme/Instruction Cycle 3.2 Instruction Flow/Pipelining An instruction cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the PC to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 3-1). The clock is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the PC is incremented every Q1 and the instruction is fetched from program memory and latched into the instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-3 and Example 3-1. A fetch cycle begins with the PC incrementing in Q1. In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write). FIGURE 3-3: CLOCK/INSTRUCTION CYCLE Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 OSC1 Q1 Q2 Internal phase clock Q3 Q4 PC PC PC + 1 Fetch INST (PC) Execute INST (PC – 1) EXAMPLE 3-1: PC + 2 Fetch INST (PC + 1) Execute INST (PC) Fetch INST (PC + 2) Execute INST (PC + 1) INSTRUCTION PIPELINE FLOW 1. MOVLW 03H 2. MOVWF GPIO 3. CALL SUB_1 4. BSF GPIO, BIT1 Fetch 1 Execute 1 Fetch 2 Execute 2 Fetch 3 Execute 3 Fetch 4 Flush Fetch SUB_1 Execute SUB_1 All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction is “flushed” from the pipeline, while the new instruction is being fetched and then executed. DS40001239F-page 10 2004-2014 Microchip Technology Inc.