HMC618ALP3E v01.0519 GaAs SMT pHEMT LOW NOISEAMPLIFIER, 1.2 - 2.2 GHz1700 to 2200 MHz TunePower Compression @ 2100 MHz [1]Power Compression @ 2100 MHz [2] 25 110 25 79 T ) % 20 105 % 20 72 M , PAE( , PAE( B) 15 100 I B) 15 65 I (d dd (d dd N ( N ( AI m m A AI A E - S 10 95 ) 58 ) ), G 10 ), G Bm Bm IS t(d t(d u 5 90 u 5 51 Po Po O 0 85 0 44 -13 -10 -7 -4 -1 2 5 -13 -11 -9 -7 -5 -3 -1 1 3 5 INPUT POWER (dBm) INPUT POWER (dBm) W N Pout Gain PAE Pout Gain PAE O Idd Idd S - L Gain, Power & Noise Figure vs.Gain, Power & Noise Figure vs. R Supply Voltage @ 1700 MHz [1]Supply Voltage @ 1700 MHz [2] IE 26 1.2 24 1.2 24 1 22 1 LIF ) N N Bm O Bm O P (d 22 0.8 IS (d 20 0.8 IS B B d E E F d F M P1 IG IG 20 0.6 P1 18 0.6 & U & U A R R B) E B) E (d 18 0.4 ( (d 16 0.4 ( N d d B N B AI ) AI ) G G 16 0.2 14 0.2 14 0 12 0 4.5 5 5.5 2.7 3 3.3 VOLTAGE SUPPLY (V) VOLTAGE SUPPLY (V) GAIN P1dB GAIN P1dB Noise Figure Noise figure Gain, Power & Noise Figure vs.Gain, Power & Noise Figure vs.Supply Voltage @ 2100 MHz [1]Supply Voltage @ 2100 MHz [2] 26 1.2 24 1.2 24 1 1 ) 22 ) N Bm N O Bm (d O 22 0.8 IS (d 20 0.8 IS B d E B F d E F P1 IG 20 0.6 P1 IG 18 0.6 & U U R & B) R E B) E (d 18 0.4 ( (d 0.4 ( N d 16 B N d B AI ) AI ) G G 16 0.2 14 0.2 14 0 12 0 4.5 5 5.5 2.7 3 3.3 VOLTAGE SUPPLY (V) VOLTAGE SUPPLY (V) GAIN P1dB GAIN P1dB Noise Figure Noise Figure [1] Vdd = 5V, Rbias = 470 Ohm [2] Vdd = 3V, Rbias = 10K Ohm For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com 5 Application Support: Phone: 1-800-ANALOG-D Document Outline Typical Applications Features Functional Diagram General Description Electrical Specifications 1200 to 1700 MHz Tune Gain vs. Temperature Gain vs. Temperature Input Return Loss vs. Temperature Input Return Loss vs. Temperature Output Return Loss vs. Temperature Output Return Loss vs. Temperature Reverse Isolation vs. Temperature Reverse Isolation vs. Temperature Noise Figure vs. Temperature Noise Figure vs. Temperature Output P1dB vs. Temperature Output P1dB vs. Temperature Psat vs. Temperature Psat vs. Temperature Output IP3 vs. Temperature Output IP3 vs. Temperature 1700 to 2200 MHz Tune Broadband Gain & Return Loss Gain vs. Temperature Gain vs. Temperature Input Return Loss vs. Temperature Output Return Loss vs. Temperature Reverse Isolation vs. Temperature Noise Figure vs Temperature Output P1dB vs. Temperature Psat vs. Temperature Output IP3 vs. Temperature Output IP3 and Idd vs. Supply Voltage @ 1750 MHz Output IP3 and Idd vs. Supply Voltage @ 1750 MHz Output IP3 and Idd vs. Supply Voltage @ 2100 MHz Output IP3 and Idd vs. Supply Voltage @ 2100 MHz Power Compression @ 1750 MHz Power Compression @ 1750 MHz Power Compression @ 2100 MHz Power Compression @ 2100 MHz Gain, Power & Noise Figure vs. Supply Voltage @ 1750 MHz Gain, Power & Noise Figure vs. Supply Voltage @ 1750 MHz Gain, Power & Noise Figure vs. Supply Voltage @ 2100 MHz Gain, Power & Noise Figure vs. Supply Voltage @ 2100 MHz Output IP3 vs. Rbias @ 1750 MHz Gain, Noise Figure vs. Rbias @ 1750 MHz Output IP3 vs. Rbias @ 2100 MHz Gain, Noise Figure vs. Rbias @ 2100 MHz Absolute Bias Resistor Range & Recommended Bias Resistor Values for Idd Absolute Maximum Ratings Typical Supply Current vs. Vdd Outline Drawing Package Information Pin Descriptions Evaluation PCB 1700 to 2200 MHz Tune Application Circuit Evaluation PCB Ordering Information List of Materials 1200 to 1700 MHz Tune Application Circuit Evaluation PCB Ordering Information List of Materials