Datasheet MCP4902, MCP4912, MCP4922 (Microchip) - 5

FabricanteMicrochip
Descripción8/10/12-Bit Dual Voltage Output Digital-to-Analog Converter with SPI Interface
Páginas / Página48 / 5 — MCP4902/4912/4922. ELECTRICAL CHARACTERISTIC WITH EXTENDED TEMPERATURE. …
Formato / tamaño de archivoPDF / 3.8 Mb
Idioma del documentoInglés

MCP4902/4912/4922. ELECTRICAL CHARACTERISTIC WITH EXTENDED TEMPERATURE. Electrical Specifications:. Parameters. Sym. Min. Typ. Max

MCP4902/4912/4922 ELECTRICAL CHARACTERISTIC WITH EXTENDED TEMPERATURE Electrical Specifications: Parameters Sym Min Typ Max

Línea de modelo para esta hoja de datos

Versión de texto del documento

link to page 3 link to page 3 link to page 3 link to page 3
MCP4902/4912/4922 ELECTRICAL CHARACTERISTIC WITH EXTENDED TEMPERATURE Electrical Specifications:
Unless otherwise indicated, VDD = 5V, VSS = 0V, VREF = 2.048V, Output Buffer Gain (G) = 2x, RL = 5 k to GND, CL = 100 pF. Typical values are at +125°C by characterization or simulation.
Parameters Sym Min Typ Max Units Conditions Power Requirements
Operating Voltage VDD 2.7 — 5.5 V Operating Current IDD — 400 — µA VREF input is unbuffered, al digi- tal inputs are grounded, all analog outputs (VOUT) are unloaded. Code=000h Hardware Shutdown ISHDN — 1.5 — µA POR circuit is turned-off Current Software Shutdown Current ISHDN_SW — 5 — µA POR circuit stays turned-on Power-On Reset threshold VPOR — 1.85 — V
DC Accuracy MCP4902
Resolution n 8 — — Bits INL Error INL ±0.25 LSb DNL DNL ±0.2 LSb
Note 1 MCP4912
Resolution n 10 — — Bits INL Error INL ±1 LSb DNL DNL ±0.2 LSb
Note 1 MCP4922
Resolution n 12 — — Bits INL Error INL ±4 LSb DNL DNL ±0.25 LSb
Note 1
Offset Error VOS — ±0.02 — % of FSR Code 0x000h Offset Error Temperature VOS/°C — -5 — ppm/°C +25°C to +125°C Coefficient Gain Error gE — -0.10 — % of FSR Code = 0xFFFh, not including off- set error Gain Error Temperature G/°C — -3 — ppm/°C Coefficient
Input Amplifier (VREF Input)
Input Range – Buffered VREF — 0.040 to — V
Note 1
Mode VDD – 0.040 Code = 2048, VREF = 0.2V p-p, f = 100 Hz and 1 kHz Input Range – Unbuffered VREF 0 — VDD V Mode Input Impedance RVREF — 174 — k Unbuffered mode Input Capacitance – CVREF — 7 — pF Unbuffered Mode
Note 1:
Guaranteed monotonic by design over all codes.
2:
This parameter is ensured by design, and not 100% tested.  2010 Microchip Technology Inc. DS22250A-page 5 Document Outline 1.0 Electrical Characteristics FIGURE 1-1: SPI Input Timing Data. 2.0 Typical Performance Curves FIGURE 2-1: DNL vs. Code (MCP4922). FIGURE 2-2: DNL vs. Code and Temperature (MCP4922). FIGURE 2-3: DNL vs. Code and VREF, Gain = 1 (MCP4922). FIGURE 2-4: Absolute DNL vs. Temperature (MCP4922). FIGURE 2-5: Absolute DNL vs. Voltage Reference (MCP4922). FIGURE 2-6: INL vs. Code and Temperature (MCP4922). FIGURE 2-7: Absolute INL vs. Temperature (MCP4922). FIGURE 2-8: Absolute INL vs. VREF (MCP4922). FIGURE 2-9: INL vs. Code and VREF (MCP4922). FIGURE 2-10: INL vs. Code (MCP4922). FIGURE 2-11: DNL vs. Code and Temperature (MCP4912). FIGURE 2-12: INL vs. Code and Temperature (MCP4912). FIGURE 2-13: DNL vs. Code and Temperature (MCP4902). FIGURE 2-14: INL vs. Code and Temperature (MCP4902). FIGURE 2-15: IDD vs. Temperature and VDD. FIGURE 2-16: IDD Histogram (VDD = 2.7V). FIGURE 2-17: IDD Histogram (VDD = 5.0V). FIGURE 2-18: Hardware Shutdown Current vs. Ambient Temperature and VDD. FIGURE 2-19: Software Shutdown Current vs. Ambient Temperature and VDD. FIGURE 2-20: Offset Error vs. Ambient Temperature and VDD. FIGURE 2-21: Gain Error vs. Ambient Temperature and VDD. FIGURE 2-22: VIN High Threshold vs Ambient Temperature and VDD. FIGURE 2-23: VIN Low Threshold vs Ambient Temperature and VDD. FIGURE 2-24: Input Hysteresis vs. Ambient Temperature and VDD. FIGURE 2-25: VREF Input Impedance vs. Ambient Temperature and VDD. FIGURE 2-26: VOUT High Limit vs. Ambient Temperature and VDD. FIGURE 2-27: VOUT Low Limit vs. Ambient Temperature and VDD. FIGURE 2-28: IOUT High Short vs. Ambient Temperature and VDD. FIGURE 2-29: IOUT vs VOUT. Gain = 1x. FIGURE 2-30: VOUT Rise Time. FIGURE 2-31: VOUT Fall Time. FIGURE 2-32: VOUT Rise Time. FIGURE 2-33: VOUT Rise Time. FIGURE 2-34: VOUT Rise Time Exit Shutdown. FIGURE 2-35: PSRR vs. Frequency. FIGURE 2-36: Multiplier Mode Bandwidth. FIGURE 2-37: -3 db Bandwidth vs. Worst Codes. FIGURE 2-38: Phase Shift. 3.0 Pin Descriptions TABLE 3-1: Pin Function Table 3.1 Supply Voltage Pins (VDD, VSS) 3.2 Chip Select (CS) 3.3 Serial Clock Input (SCK) 3.4 Serial Data Input (SDI) 3.5 Latch DAC Input (LDAC) 3.6 Hardware Shutdown Input (SHDN) 3.7 Analog Outputs (VOUTA, VOUTB) 3.8 Voltage Reference Inputs (VREFA, VREFB) 4.0 General Overview TABLE 4-1: LSb of each device 4.1 DC Accuracy FIGURE 4-1: Example for INL Error. FIGURE 4-2: Example for DNL Accuracy. 4.2 Circuit Descriptions FIGURE 4-3: Typical Transient Response. FIGURE 4-4: Output Stage for Shutdown Mode. 5.0 Serial Interface 5.1 Overview 5.2 Write Command FIGURE 5-1: Write Command for MCP4922 (12-bit DAC). FIGURE 5-2: Write Command for MCP4912 (10-bit DAC). FIGURE 5-3: Write Command for MCP4902 (8-bit DAC). 6.0 Typical Applications 6.1 Digital Interface 6.2 Power Supply Considerations FIGURE 6-1: Typical Connection Diagram. 6.3 Layout Considerations 6.4 Single-Supply Operation 6.5 Bipolar Operation 6.6 Selectable Gain and Offset Bipolar Voltage Output Using a Dual DAC 6.7 Designing a Double-Precision DAC Using a Dual DAC 6.8 Building Programmable Current Source 6.9 Using Multiplier Mode 7.0 Development support 7.1 Evaluation and Demonstration Boards 8.0 Packaging Information 8.1 Package Marking Information Trademarks Worldwide Sales and Service