Datasheet MCP6L71, MCP6L71R, MCP6L72, MCP6L74 (Microchip) - 7

FabricanteMicrochip
DescripciónThe MCP6L71 operational amplifier has 2MHz Gain Bandwidth Product and a low 150uA per amplifier quiescent current
Páginas / Página32 / 7 — MCP6L71/1R/2/4. 2.0. TYPICAL PERFORMANCE CURVES. Note:. 300. 0.5. DD = …
Formato / tamaño de archivoPDF / 464 Kb
Idioma del documentoInglés

MCP6L71/1R/2/4. 2.0. TYPICAL PERFORMANCE CURVES. Note:. 300. 0.5. DD = 2.0V. 250. V 0.4. Representitive Part. e 0.3. 200. CMRH – VDD. 0.2. lta. 150

MCP6L71/1R/2/4 2.0 TYPICAL PERFORMANCE CURVES Note: 300 0.5 DD = 2.0V 250 V 0.4 Representitive Part e 0.3 200 CMRH – VDD 0.2 lta 150

Línea de modelo para esta hoja de datos

Versión de texto del documento

MCP6L71/1R/2/4 2.0 TYPICAL PERFORMANCE CURVES Note:
The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note:
Unless otherwise indicated, T ≈ A = +25°C, VDD = 5.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2, VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF.
300 0.5 ) V ) V DD = 2.0V 250 V 0.4 Representitive Part ( e 0.3 e 200 V g ng CMRH – VDD 0.2 a lta 150 o R 0.1 e 100 t V d 0.0 One Wafer Lot e T = +125°C o 50 A ffs M -0.1 TA = +85°C on t O 0 -0.2 T u A = +25°C m p -0.3 -50 T = -40°C m V In A o CMRL – VSS -0.4 C -100 -0.5 .4 .2 0 2 4 6 8 0 2 4 6 8 0 2 4 -0 -0 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 2. 2. 2. -50 -25 0 25 50 75 100 125 Common Mode Input Voltage (V) Ambient Temperature (°C) FIGURE 2-1:
Input Offset Voltage vs.
FIGURE 2-4:
Input Common Mode Range Common Mode Input Voltage at VDD = 2.0V. Voltage vs. Ambient Temperature.
300 120 ) V V DD = 5.5V 250 µ Representitive Part 110 ( e 200 g 100 CMRR (V = -0.3V to +5.3V) lta 150 CM T o A = +125°C RR (dB) 100 90 t V e , CM 50 PSRR ffs T 80 A = +85°C RR (V = V ) O CM SS 0 T S A = +25°C P 70 -50 T = -40°C A Input -100 60 .5 0 5 0 5 0 5 0 5 0 5 0 5 0 -50 -25 0 25 50 75 100 125 -0 0. 0. 1. 1. 2. 2. 3. 3. 4. 4. 5. 5. 6. Common Mode Input Voltage (V) Ambient Temperature (°C) FIGURE 2-2:
Input Offset Voltage vs.
FIGURE 2-5:
CMRR, PSRR vs. Common Mode Input Voltage at V Temperature. DD = 5.5V.
300 110 ) VCM = VSS V 250 100 CMRR Representative Part (µ e 200 90 B) g (d 80 lta 150 o RR 70 100 S t V e P 60 PSRR– 50 ffs PSRR+ 50 RR, t O 0 u V 40 DD = 2.0V VDD = 5.5V CM p -50 In 30 -100 20 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 1.E+ 1 00 1.E+01 10 1.E+0 100 2 1.E+03 1k 1.E+0 10k 4 1.E+ 10 05 0k 1.E+0 1M 6 Output Voltage (V) Frequency (Hz) FIGURE 2-3:
Input Offset Voltage vs.
FIGURE 2-6:
CMRR, PSRR vs. Output Voltage. Frequency. © 2009 Microchip Technology Inc. DS22145A-page 7 Document Outline 1.0 Electrical Characteristics 1.1 Absolute Maximum Ratings † 1.2 Specifications TABLE 1-1: DC Electrical Specifications (Continued) TABLE 1-2: AC Electrical Specifications TABLE 1-3: Temperature Specifications 1.3 Test Circuits FIGURE 1-1: AC and DC Test Circuit for Most Specifications. 2.0 Typical Performance Curves FIGURE 2-1: Input Offset Voltage vs. Common Mode Input Voltage at VDD = 2.0V. FIGURE 2-2: Input Offset Voltage vs. Common Mode Input Voltage at VDD = 5.5V. FIGURE 2-3: Input Offset Voltage vs. Output Voltage. FIGURE 2-4: Input Common Mode Range Voltage vs. Ambient Temperature. FIGURE 2-5: CMRR, PSRR vs. Temperature. FIGURE 2-6: CMRR, PSRR vs. Frequency. FIGURE 2-7: Input Current vs. Input Voltage. FIGURE 2-8: Open-Loop Gain, Phase vs. Frequency. FIGURE 2-9: Input Noise Voltage Density vs. Frequency. FIGURE 2-10: The MCP6L71/1R/2/4 Show No Phase Reversal. FIGURE 2-11: Quiescent Current vs. Supply Voltage. FIGURE 2-12: Output Short Circuit Current vs. Supply Voltage. FIGURE 2-13: Ratio of Output Voltage Headroom vs. Output Current Magnitude. FIGURE 2-14: Large Signal Non-inverting Pulse Response. FIGURE 2-15: Small Signal Non-inverting Pulse Response. FIGURE 2-16: Slew Rate vs. Ambient Temperature. FIGURE 2-17: Maximum Output Voltage Swing vs. Frequency. 3.0 Pin Descriptions TABLE 3-1: Pin Function Table for Single Op Amps TABLE 3-2: Pin Function Table for Dual and Quad Op Amps 3.1 Analog Outputs 3.2 Analog Inputs 3.3 Power Supply Pins 4.0 Application Information 4.1 Rail-to-Rail Inputs FIGURE 4-1: Protecting the Analog Inputs. 4.2 Rail-to-Rail Output 4.3 Capacitive Loads FIGURE 4-2: Output Resistor, RISO Stabilizes Large Capacitive Loads. 4.4 Supply Bypass 4.5 Unused Amplifiers FIGURE 4-3: Unused Op Amps. 4.6 PCB Surface Leakage FIGURE 4-4: Example Guard Ring Layout. 4.7 Application Circuits FIGURE 4-5: Inverting Integrator. 5.0 Design Tools 5.1 FilterLab® Software 5.2 MAPS (Microchip Advanced Part Selector) 5.3 Analog Demonstration and Evaluation Boards 5.4 Application Notes 6.0 Packaging Information 6.1 Package Marking Information